
Modular Code Parser for the P4 Language
Mohsen Rahmati, François-Raymond Boyer, Bill Pontikakis, Jean-Pierre David, and Yvon Savaria

Polytechnique Montréal

Abstract

We present an extension over the open-source P4C compiler,
for modular header parsers for the P4 language. Modularity is
essential to obtain code reusability, composability, and incre-
mental programming. The modular parser includes matching
and resolving names of the identifiers of two parser graphs,
comparing them, and finally merging them. A significant fea-
ture of this modular parser is the backward compatibility of
pre-existing P4 codes. It permits merging parsing codes auto-
matically and allows to offer vendor-customer compatibility
without having to learn new syntax or annotations.

1 Introduction to the Modular P4 Code Parser
P4 [1] introduces a novel method for enhancing data plane
programmability of network devices, but it, unfortunately,
lacks good support for modularity, which is crucial for at
least three distinct reasons: reusability, composability, and
vendor/customer partitioning.

To partly address this challenge, we present a modular code
parser for the P4 language that implements three new passes
in the front end for the open-source P4 Compiler [2].

Resolving names: We implemented a compilation pass that
matches and select a common name for “equivalent” identi-
fiers in both parsers.

Compare two parser graphs: We implemented a second
compilation pass that compares two parser graphs state by
state to match “equivalent” states.

Merging two parser graphs: We implemented a third com-
pilation pass that merges the two parser graphs according to
the result of the other passes.

Testing Modular Parser: We tested the modular parser with
simple (P4 tutorial exercises [3]) and more advanced (SRV6
Cisco [4]) examples. The modular code parser also permits to
#include some ‘vendor’s’ code in a ‘customer’s’ code without
adding new syntax and/or annotation.

2 Methodology for Implementing the Proposed
Modular P4 Code Parser

In the first step, we match and resolve the names of the inputs
and outputs of two parser graphs. We change the names of the
inputs and outputs of the second parser graphs to match the
first graph for packets, local metadatas, standard metadatas,
and headers.

We compare finite-state machines (FSM) of the two parser
graphs state by state. The challenge is that programmers can
use different names for the same state, so we used protocol

Figure 1: The graphs of UDP, TCP, merged parser using [2].

numbers for comparing the states of the FSMs. We consid-
ered three different scenarios. In the first scenario, we have
equivalent states with equivalent children in the vendor and
customer code, so we keep only one of the equivalent states.
In the next scenario, we have some states in the customer
code which are not in the vendor code, so these states are all
added separately to the final parser. In the next one, we have
some equivalent states with different children, so we need to
merge transitions that are not in the vendor state and merge
parserLocalElements in the vendor code.

We may need to merge states with different names, but with
the same ”protocol number” (value of the field used for the
transition). Another problem is that we may have the protocol
number of a state in the parent of that state in the P4 language.
For finding the protocol number of each state, we check the
name of the state in its parent and compare that name with
the name of that state to find the protocol number in each
state. Then, we could compare two parser graphs with the
protocol numbers except for start, reject, verify, accept, and
"Ethernet" (the top header parsed). We use the state name for
start, reject, verify, and accept (as defined by the P4 spec), and
the top state without protocol number is considered equivalent
in both graphs (Ethernet in most examples).

In the case we have corresponding nodes in the vendor’s
and customer’s codes, we need to understand which chil-
dren are not the same and merge their transitions and parser-
LocalElements, except for extracting packets. Indeed, if we
have nodes extracting packets in the first parser code, we do
not need to merge extracted packets of the second parser code.

References
[1] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming protocol-independent
packet processors. 44:87–95, 2014.

[2] "the open-source p4 compiler". https://github.com/p4lang/p4c.

[3] "the p4 tutorials". https://github.com/knetsolutions/
p4-tutorials/tree/master/exercises.

[4] "the srv6 network programming". https://github.com/netgroup/
p4-srv6/blob/master/p4src/include/parser.p4.

https://github.com/p4lang/p4c
https://github.com/knetsolutions/p4-tutorials/tree/master/exercises
https://github.com/knetsolutions/p4-tutorials/tree/master/exercises
https://github.com/netgroup/p4-srv6/blob/master/p4src/include/parser.p4
https://github.com/netgroup/p4-srv6/blob/master/p4src/include/parser.p4

	Introduction to the Modular P4 Code Parser
	Methodology for Implementing the Proposed Modular P4 Code Parser

